• Login
    View Item 
    •   DSpace Home
    • School of Medicine
    • Journal Papers in PubMed
    • View Item
    •   DSpace Home
    • School of Medicine
    • Journal Papers in PubMed
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons.

    Thumbnail
    Date
    2014-Nov
    Author
    A Shojaei
    S Semnanian
    M Janahmadi
    H Moradi-Chameh
    S M Firoozabadi
    J Mirnajafi-Zadeh
    Metadata
    Show full item record
    Abstract
    The mechanisms underlying antiepileptic or antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS) are poorly understood. In this study, we investigated the effect of rTMS applied during rapid amygdala kindling on some electrophysiological properties of hippocampal CA1 pyramidal neurons. Male Wistar rats were kindled by daily electrical stimulation of the basolateral amygdala in a semi-rapid manner (12 stimulations/day) until they achieved stage-5 seizure. One group (kindled+rTMS (KrTMS)) of animals received rTMS (1Hz for 4min) 5min after termination of daily kindling stimulations. Twenty four hours following the last kindling stimulation electrophysiological properties of hippocampal CA1 pyramidal neurons were investigated using whole-cell patch-clamp technique. Amygdala kindling significantly depolarized the resting membrane potential and increased the input resistance, spontaneous firing activity, number of evoked spikes and half-width of the first evoked spike. Kindling also decreased the first-spike latency and amplitude significantly. Application of rTMS during kindling somehow prevented the development of seizures and protected CA1 pyramidal neurons of hippocampus against deleterious effect of kindling on both passive and active neuronal electrophysiological properties. Interestingly, application of rTMS alone enhanced the excitability of CA1 pyramidal neurons significantly. Based on the results of our study, it may be suggested that rTMS exerts its anticonvulsant effect, in part, through preventing the amygdala kindling-induced changes in electrophysiological properties of hippocampal CA1 pyramidal neurons. It seems that rTMS exerts protective effects on the neural circuits involved in spreading the seizures from the focus to other parts of the brain.
    DOI
    http://dx.doi.org/10.1016/j.neuroscience.2014.09.022
    Collections
    • Journal Papers in PubMed

    Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Contact Us | Send Feedback