Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nano-biomolecular motors

Date
2012-07-01Author
A. Lohrasebi
A. Lohrasebi
S. Mohamadi
S. Fadaie
H. Rafii-Tabar
H. Rafii-Tabar
Metadata
Show full item recordAbstract
We model the dynamics of the F 0 component of the F 0 F 1 -ATPase mitochondrion-based nano-motor operating in a stochastically-fluctuating medium that represents the intracellular environment. The stochastic dynamics are modeled via Langevin equation of motion wherein fluctuations are treated as white noise. We have investigated the influence of an applied alternating electric field on the rotary motion of the F 0 rotor in such an environment. The exposure to the field induces a temperature rise in the mitochondrion's membrane, within which the F 0 is embedded. The external field also induces an electric potential that promotes a change in the mitochondrion's transmembrane potential (TMP). Both the induced temperature and the change in TMP contribute to a change in the dynamics of the F 0 . We have found that for external fields in the radio frequency (RF) range, normally present in the environment and encountered by biological systems, the contribution of the induced thermal effects, relative to that of the induced TMP, to the dynamics of the F 0 is more significant. The changes in the dynamics of the F 0 part affect the frequency of the rotary motion of the F 0 F 1 -ATPase protein motor which, in turn, affects the production rate of the ATP molecules. © 2011 Associazione Italiana di Fisica Medica.